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Abstract 

The energy balance of an aluminum reduction cell largely determines its operational window. A 

critical design concept is to dissipate enough heat to maintain a frozen layer of electrolyte (the 

ledge) that will protect the lateral surfaces of the lining from the aggressive bath. Experimental 

evidence shows that the upper ledge (facing bath) and the lower ledge (facing metal) have 

different chemical compositions. While the alumina content of the upper ledge is normally lower 

than in the bulk of the bath, the lower ledge is formed from an Al2O3-saturated solution close to 

the eutectic point. It is rationalized that this is the result of different mechanisms: the top portion 

is formed by direct freezing of the bulk bath, but the lower ledge originates from an entrained thin 

film of bath. However, most published energy balance models assume that the heat flux on the 

entire ledge surface is driven by a single superheat (i.e., the difference between the bulk bath 

temperature and the liquidus temperature evaluated at the bulk bath composition). This paper 

proposes a methodology to converge the ledge profile using different melting temperatures for 

the distinct cavity regions, including a simplified representation of the ledge trench found at the 

bath-metal interface. This was implemented in the modernized ANSYS-based thermoelectrical 

model presented earlier [1]. The implications of this paradigm shift in the thermal design of an 

aluminum reduction cell are discussed by means of the numerical results obtained for a fictitious 

300 kA cell technology. 

Keywords: Aluminum reduction cells, Heat balance, Ledge trench, Liquidus temperature, 

Eutectic point. 

1. Introduction

The energy balance of an aluminum reduction cell largely determines its operational window. A 

critical design concept is to dissipate enough heat to maintain a frozen layer of electrolyte (the 

ledge) that will protect the lateral surfaces of the lining from the aggressive bath. The prediction 

of the ledge profile can be quite challenging and numerical modeling is broadly employed to study 

the thermal-electrical behavior of the lining. The authors introduced in 2020 a modernized 

ANSYS-based thermoelectrical (TE) model [1] that builds upon the foundations first introduced 

and further developed by Dupuis [2–4] from the mid-1980s up to his most recent publications in 

the 2020s. 

Dupuis’ original approach relies on the iterative repositioning of the ledge front in a TE Finite 

Element (FE) model. The algorithm involves successive repositioning of the solidification front 

nodes based on the calculated temperature field until the entire ledge-to-liquids interface reaches 

the bath solidification temperature, 𝑇𝑙𝑖𝑞. The superheat (i.e., the difference between the bulk bath

temperature and the liquidus temperature evaluated at the bulk bath composition, ∆𝑇𝑢𝑝𝑝𝑒𝑟 =

𝑇𝑜𝑝𝑟 − 𝑇𝑙𝑖𝑞 ), is also adjusted while converging the ledge profile to minimize the difference

between the cell internal heat generation and the integrated heat losses over the control volume. 
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This widely accepted methodology (and variants) assumes that the heat flux on the entire ledge 

surface is driven by a single superheat. 

 

 
Figure 1. Upper ledge, lower ledge, and cathode panel thermal loads for a traditional FE-

based energy balance model. 

 

where: 

𝑞𝑢𝑝𝑝𝑒𝑟
′′  Prescribed heat flux at the upper ledge (facing bath), W/m2 

ℎ𝑢𝑝𝑝𝑒𝑟 Uniform heat transfer coefficient at the upper ledge (facing bath), W/m2C 

𝑇𝑜𝑝𝑟  Bulk bath temperature, C 

𝑇𝑙𝑖𝑞 Liquidus temperature evaluated at the bulk bath composition, C 

𝑞𝑙𝑜𝑤𝑒𝑟
′′  Prescribed heat flux at the lower ledge (facing metal), W/m2 

ℎ𝑙𝑜𝑤𝑒𝑟 Uniform heat transfer coefficient at the lower ledge (facing metal), W/m2C 

ℎ𝑐𝑎𝑡ℎ𝑜𝑑𝑒 Prescribed uniform heat transfer coefficient at the cathode panel surface, W/m2C. 

 

It is worth noting that this computational strategy is the basis for several successful aluminum 

reduction technologies designed by different parties, therefore unquestionably valuable from a 

design standpoint. Nevertheless, experimental evidence suggests that it cannot capture all the 

features of an industrial cell’s ledge profile, as depicted in Figure 2. While models based on this 

strategy are able to capture the position of the ledge toe fairly well, the lower ledge (facing metal) 

tends to be either thicker or thinner than the computed profile. Most apparent is a remarkable 

reduction in the ledge thickness observed at the metal pad-bath interface. Finally, the upper 

portion (facing bath) of the measured ledge profile tends to be thicker than model predictions. 

 

Legend 

 

Prescribed heat flux 

 

 

Prescribed heat transfer 

coefficient and bulk temperature 𝑞𝑢𝑝𝑝𝑒𝑟
′′ = ℎ𝑢𝑝𝑝𝑒𝑟 ∙ ൫𝑇𝑜𝑝𝑟 − 𝑇𝑙𝑖𝑞൯ 

𝑞𝑙𝑜𝑤𝑒𝑟
′′ = ℎ𝑙𝑜𝑤𝑒𝑟 ∙ ൫𝑇𝑜𝑝𝑟 − 𝑇𝑙𝑖𝑞൯ 

ℎ𝑐𝑎𝑡ℎ𝑜𝑑𝑒 , 𝑇𝑜𝑝𝑟  

Upper ledge target 
temperature = Tliq 

Lower ledge target 
temperature = T

liq
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6. Conclusions 

 

A methodology to converge the ledge profile using different melting temperatures for the distinct 

cavity regions, including a simplified representation of the ledge trench found at the bath-metal 

interface was implemented by leveraging the data structure of the modernized ANSYS-based TE 

FE model previously introduced by the authors. This methodology uses two distinct superheat 

definitions, namely, the traditional ∆𝑇𝑢𝑝𝑝𝑒𝑟 = 𝑇𝑜𝑝𝑟 − 𝑇𝑙𝑖𝑞  at the bath level, and ∆𝑇𝑙𝑜𝑤𝑒𝑟 =

𝑇𝑎𝑙𝑢 − 𝑇𝑒𝑢𝑡 at the metal pad level. The lower ledge superheat requires a reasonable estimation of 

both the bulk metal pad temperature and the bath film chemical composition. Finally, the 

simplified representation of the ledge trench is based on a parabolic heat transfer coefficient 

distribution that varies with the trench height. 

 

Based on the obtained numerical results, it is the opinion of the authors that computation of a 

more realistic ledge profile requires considering both the unavoidable trench at the bath-metal 

interface and the different ledge formation mechanisms at metal pad and bath level. While the 

preliminary results are encouraging, validation against actual pots is required to determine both 

its reliability and usefulness as a design tool. 
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